AMLCS-DA: A data assimilation package in Python for Atmospheric General Circulation Models

نویسندگان

چکیده

This paper introduces AMLCS-DA, a Python package designed to perform sequential Data Assimilation (DA) on Atmospheric General Circulation Models (AT-GCM). The provides implementations of well-known ensemble-based methods. default forecast step relies the AT-GCM SPEEDY. Users can define various configurations for assimilation steps, including density observational networks, background error correlation structures, and inflation factors. also allows analyzing errors in ways, such as time evolution statistics across pressure levels. Additionally, enables testing new methods realistic operational scenarios comparing their performance with DA formulations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atmospheric tides in a Mars general circulation model with data assimilation

The prominence of thermal tides in the Martian atmosphere has long been recognized, through classical theory, models and observations, including surface pressure records from the Viking and Mars Pathfinder Landers. A unique record of observations over more than two Martian years is now available from the Mars Global Surveyor spacecraft, although since the spacecraft is Sun-synchronous it is dif...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Global Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model: Conventional Observation

An Artificial Neural Network (ANN) is designed to investigate its application for data assimilation. This procedure provides an appropriated initial condition to the atmosphere to weather forecasting. Data assimilation is a method to insert observational information into a physicalmathematical model. The goal here is the process for assimilating meteorological observations. The numerical experi...

متن کامل

Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model: Conventional Observation

This paper presents an approach for employing an artificial neural network (NN) to emulate an ensemble Kalman filter (EnKF) as a method of data assimilation. The assimilation methods are tested in the Simplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY) model, an atmospheric general circulation model (AGCM), using synthetic observational data simulating localization of balloon soun...

متن کامل

Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model

We examined the observed temperature data from Thermal Emission Spectrometer (TES) between heliocentric longitude L• = 141 ø and 146 ø (•10 Martian days in northern summer) during the mapping phase, then compared them with the simulated results using the NASA/Ames Mars general circulation model. Both show a strong polar vortex at the winter pole, higher equatorial temperatures near the ground a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SoftwareX

سال: 2023

ISSN: ['2352-7110']

DOI: https://doi.org/10.1016/j.softx.2023.101374